Axonal Transport of Neural Membrane Protein 35 mRNA Increases Axon Growth
نویسندگان
چکیده
منابع مشابه
Axonal transport of neural membrane protein 35 mRNA increases axon growth.
Many neuronal mRNAs are transported from cell bodies into axons and dendrites. Localized translation of the mRNAs brings autonomy to these processes that can be vast distances from the cell body. For axons, these translational responses have been linked to growth and injury signaling, but there has been little information about local function of individual axonally synthesized proteins. In the ...
متن کاملNeural Progenitor Cells Promote Axonal Growth and Alter Axonal mRNA Localization in Adult Neurons
The inhibitory environment of the spinal cord and the intrinsic properties of neurons prevent regeneration of axons following CNS injury. However, both ascending and descending axons of the injured spinal cord have been shown to regenerate into grafts of embryonic neural progenitor cells (NPCs). Previous studies have shown that grafts composed of glial-restricted progenitors (GRPs) and neural-r...
متن کاملCopb1-facilitated axonal transport and translation of opioid-receptor mRNA
mRNA of opioid receptor (KOR) can be transported to nerve fibers, including axons of dorsal root ganglia (DRG), and can be locally translated. Yeast three-hybrid screening identifies Copb1 as a kor mRNA-associated protein that form complexes with endogenous kor mRNA, which are colocalized in the soma and axons of DRG neurons. Axonal transport of kor mRNA is demonstrated, directly, by observing ...
متن کاملMicrotubule transport and assembly during axon growth
There is controversy concerning the mechanisms by which the axonal microtubule (MT) array is elaborated, with some models focusing on MT assembly and other models focusing on MT transport. We have proposed a composite model in which MT assembly and transport are both important (Joshi, H.C., and P.W. Baas. 1993. J. Cell Biol. 121:1191-1196). In the present study, we have taken a novel approach t...
متن کاملNovel RNA- and FMRP-binding protein TRF2-S regulates axonal mRNA transport and presynaptic plasticity
Despite considerable evidence that RNA-binding proteins (RBPs) regulate mRNA transport and local translation in dendrites, roles for axonal RBPs are poorly understood. Here we demonstrate that a non-telomeric isoform of telomere repeat-binding factor 2 (TRF2-S) is a novel RBP that regulates axonal plasticity. TRF2-S interacts directly with target mRNAs to facilitate their axonal delivery. The p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Cell Science
سال: 2012
ISSN: 1477-9137,0021-9533
DOI: 10.1242/jcs.107268